

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) \approx P_2(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} f_i + \frac{x - x_i}{x_{i+1} - x_i} f_{i+1}$$

Forward difference:
$$f'(x_i) \approx P_2'(x_i) = D_+ f = \frac{f_{i+1} - f_i}{h_i}$$

Backward difference: $f'(x_{i+1}) \approx P_2'(x_{i+1}) = D_- f = \frac{f_{i+1} - f_i}{h_i}$

Forward difference:
$$f'(x_i) \approx P_2'(x_i) = D_+ f = \frac{f_{i+1} - f_i}{h_i}$$

Backward difference: $f'(x_{i+1}) \approx P_2'(x_{i+1}) = D_- f = \frac{f_{i+1} - f_i}{h_i}$

 x_i

 x_{i+1}

(a)

 x_i

 x_{i+1} x

(b)

3-Points

$$f(x) \approx P_3(x) = \frac{(x - x_i)(x - x_{i+1})}{(h_{i-1} + h_i)(h_{i-1})} f_{i-1} + \frac{(x - x_{i-1})(x - x_{1+1})}{h_{i-1}(-h_i)} f_i + \frac{(x - x_{i-1})(x - x_i)}{(h_{i-1} + h_i)(h_i)} f_{i+1} \dots (33)$$

Forward difference:
$$f'(x_{i-1}) = D_+ f = \frac{-3f_{i-1} + 4f_i - f_{i+1}}{2h}$$

Backward difference:
$$f'(x_{i+1}) = D_- f = \frac{f_{i-1} - 4f_i + 3f_{i+1}}{2h}$$

Central difference: $f'(x_i) = \frac{1}{2}(D_+ + D_-)f = \frac{f_{i+1} - f_{i-1}}{2h}$

Table 23: Coefficients for various formulas for the derivatives. The last column is the error in the derivative.

	f_{i-2}	f_{i-1}	f_i	f_{i+1}	f_{i+2}	Error
Forward		-			-	
hf'_i			-1	1		O(<i>h</i>)
$2hf'_i$			-3	4	-1	$O(h^2)$
$h^2f''_i$			1	-2	1	O(<i>h</i>)
Backward						
hf'_i		-1	1			O(<i>h</i>)
$2hf'_i$	1	-4	3			$O(h^2)$
$h^2f''_i$	1	-2	1			O(<i>h</i>)
Central			1/8//			
$2hf'_i$		-1	0	1		$O(h^2)$
$12hf'_i$	1	-8	0	8	1	$O(h^4)$
$h^2f''_i$		1	-2	1		$O(h^2)$
$12h^2f''_i$	-1	16	-30	16	-1	$O(h^4)$

$$E_n(x) = f(x) - P_n(x) = \frac{f^{(n)}(\zeta)}{n!} \prod_i (x - x_i)$$

$$f'(x_j) - P'_n(x_j) = \frac{d}{d\,x} E_n(x) \,\big|_{x = x_j} = \frac{f^{(n)}(\zeta)}{n\,!} \frac{d}{d\,x} \prod_i (x - x_i) = \frac{f^{(n)}(\zeta)}{n\,!} \prod_{i,i \neq j} (x_j - x_i)$$

$$f'(x_j) - P'_n(x_j) = \frac{d}{d\,x} E_n(x) \,\big|_{x = x_j} = \frac{f^{(n)}(\zeta)}{n\,!} \frac{d}{d\,x} \prod_i (x - x_i) = \frac{f^{(n)}(\zeta)}{n\,!} \prod_{i,i \neq j} (x_j - x_i)$$

With *n* points:

Derivative accurate for (n-1) order poly

Error : $O(h^{n-1})$

Examples

Table 23: Coefficients for various formulas for the derivatives. The last column is the error in the derivative.

	f_{i-2}	f_{i-1}	f_i	f_{i+1}	f_{i+2}	Error
Forward						
hf'i			-1	1		O(<i>h</i>)
$2hf'_i$			-3	4	-1	$O(h^2)$
$h^2f''_i$			1	-2	1	O(h)
Backward						
hf'i		-1	1			O(<i>h</i>)
$2hf'_i$	1	-4	3			$O(h^2)$
$h^2f''_i$	1	-2	1			O(<i>h</i>)
Central						
$2hf'_i$		-1	0	1		$O(h^2)$
$12hf'_i$	1	-8	0	8	1	$O(h^4)$
$h^2f''_i$		1	-2	1		$O(h^2)$
$12h^2f''_i$	-1	16	-30	16	-1	$O(h^4)$

$$f(x) = x^2$$

ODE Solvers

Initial Value Problem

Mahendra Verma

ODEs in Physics

ODE

$$\frac{dx}{dt} = \dot{x} = f(x, t)$$

$$x^{(n+1)} - x^{(n)} = \int_{t_n}^{t_{n+1}} f(x, t) dt$$

Euler forward method

Euler backward method

Midpoint method

Leapfrog method

Trapezoid method

$$\frac{dx}{dt} = \dot{x} = f(x, t)$$

$$x^{(1)} = x^{(0)} + (\Delta t) f(x^{(0)}, t_0)$$

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n)}, t_n)$$

OF TECH!

Solving $\dot{x} = -100 x$

```
def f(x,t):
    return -100*x

def Euler_explicit(f, tinit, tfinal, dt, initcond):
    n = int((tfinal-tinit)/dt)+1  # n-1 divisions
    t = np.linspace(tinit,tfinal,n)
    x = np.zeros(n)
    x[0] = initcond

for k in range(n-1):
    x[k+1] = x[k] + f(x[k],t[k])*dt
    return t,x
```

```
tinit = 0
tfinal = 1
dt = 0.01
initcond = 10
t,x = Euler_explicit(f, tinit, tfinal, dt, initcond)
```


$\dot{z} = -i\pi z$

$$\dot{x} = -t \exp(-x).$$

Error

$$x^{(n+1)} = x(t_n + \Delta t) = x(t_n) + (\Delta t)\dot{x}(t_n) + \frac{(\Delta t)^2}{2}\ddot{x}(t_n) + H \cdot O \cdot T.$$

$$= x^{(n)} + (\Delta t)f(x^{(n)}, t_n) + \frac{(\Delta t)^2}{2}\frac{df}{dt}\big|_{t_n} + H \cdot O \cdot T. \quad ...(37)$$

Error =
$$\varepsilon_n = (\frac{1}{2})(\Delta t)^2 \ddot{x}(x(n),t_n)$$

dt = 0.001

0.021

• Stable: A Method is stable if it produces a bounded solution when the solution of the ODE is bounded.

• Unstable: A method which is not stable is said to be unstable.

 Conditionally stable: A method is conditionally stable if it is stable for a set of parameters, and unstable for another set of parameters.

• Unconditionally stable: A method is unconditionally stable if it is stable for all parameter values.

• Unconditionally unstable: A method is unconditionally unstable if it is unstable for all parameter values.

$\dot{X} = QX$

Nonlinear equations

$$\dot{x} = f(x, t)$$

$$f(x,t) = f(x^{(n)}, t_n) + (x - x^{(n)}) \frac{\partial f}{\partial x} \big|_{(x^{(n)}, t_n)} + (t - t_n) \frac{\partial f}{\partial t} \big|_{(x^{(n)}, t_n)}$$

$$\dot{x}' = \beta + \alpha x' + \gamma t'.$$

Table 24: Regions of stability and instability for Examples 1-4.

ODE	Stablity regime	Instablity regime
$\dot{x} = -x$	$\Delta t < 1$	$\Delta t > 1$
$\dot{z} = -i\pi z$	None	all Δt
$\dot{x} = \alpha x$	$\Delta t < 1/ \alpha \text{ (for } \alpha < 0\text{)}$	$\Delta t > 1/ \alpha \text{ (for } \alpha < 0)$
$\dot{x} = -t \exp(-x)$	all Δt	None
$\dot{x} = x^2 - 100x$	$\Delta t < 1/100$	$\Delta t > 1/100$

ODE Solvers

Implicit Methods

Mahendra Verma

Euler's Implicit Method

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n+1)}, t_{n+1})$$

$$\dot{x} = \alpha x$$

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n+1)}, t_{n+1})$$

Difficulties

$$\dot{x} = -t \exp(-x).$$

$$x^{(n+1)} = x^{(n)} - \alpha(\Delta t) t_{n+1} \exp(-x^{(n+1)})$$

Solving $\dot{x} = x^2 - 100x$

$$x^{(n+1)} = x^{(n)} - \alpha(\Delta t) [(x^{(n+1)})^2 - 100 x^{(n+1)}]$$

$$x^{(n+1)} = \frac{1}{2(\Delta t)} \left[(100(\Delta t) + 1) - \sqrt{(100(\Delta t) + 1)^2 - 4(\Delta t)x^{(n)}} \right]$$

Accuracy

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n+1)}, t_{n+1})$$

$$f(x^{(n+1)}, t_{n+1}) = \dot{x}|_{n+1} = \dot{x}|_n + (\Delta t)\ddot{x}|_n + \frac{1}{2}(\Delta t)^2\ddot{x}|_n + \dots + H.O.T.$$

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n+1)}, t_{n+1})$$

= $x^{(n)} + (\Delta t) \dot{x} + (\Delta t)^2 \ddot{x} + [(\Delta t)^3/2] \ddot{x} + H \cdot O \cdot T$.

$$x^{(n+1)} = x^{(n)} + (\Delta t) f(x^{(n+1)}, t_{n+1})$$

= $x^{(n)} + (\Delta t) \dot{x} + (\Delta t)^2 \ddot{x} + [(\Delta t)^3/2] \ddot{x} + H \cdot O \cdot T$.

Error = Actual – Computed = $-(\frac{1}{2})(\Delta t)^2 \ddot{x}(x(n), t_n)$,

$$\dot{x} = \alpha x$$

$$x^{(n+1)} = x^{(n)} + \alpha(\Delta t)x^{(n+1)}$$

