Solvers for Laplace Equation

Mahendra Verma

• Laplace eqn: $\nabla^2 \phi = 0$

 Occurs in electrodynamics, hydrodynamics, magnetostatics, etc.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \text{ in 2D}$$
and
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \text{ in 3D}$$

Boundary condition

 Dirichlet boundary condition: Specify φ at the boundary of the domain Ω.

 Neumann boundary condition: The normal derivative of φ is specified at the boundary.

 Mixed boundary condition: Some regions of the boundary have Dirichlet BC, while the other regions have Neumann BC.

Properties

- Uniqueness theorem: The solution of the Laplace equation is uniquely determined given the boundary condition.
- In 3D, the average value of φ over a sphere is equal to its value at the center of the sphere.

 In 2D, the average value of φ over a disk is equal to its value at the center of the disk.

$$\frac{\partial^2\phi}{\partial x^2} = \frac{\phi_{i+1,j} - 2\phi_{i,j} + \phi_{i-1,j}}{h^2},$$

$$\frac{\partial^2\phi}{\partial y^2} = \frac{\phi_{i,j+1} - 2\phi_{i,j} + \phi_{i,j-1}}{h^2},$$

$$\frac{\phi_{i-1,j}-2\phi_{i,j}+\phi_{i+1,j}}{h^2}+\frac{\phi_{i,j-1}-2\phi_{i,j}+\phi_{i,j+1}}{h^2}=0$$

or,
$$\phi_{i,j} = \frac{1}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}), \dots (110)$$

Direct Method

Banded matrix

Iterative Methods: Jacobi Method

$$\bar{\phi}_{i,j} = \frac{1}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}) \,.$$

$$\max(|\bar{\phi} - \phi|) < \varepsilon$$
,

Gauss-Seidel method

$$\bar{\phi}_{i,j} \leftarrow \frac{1}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}) \,.$$

Red-Black Method

$$\bar{\phi}_{i,j} \leftarrow \frac{1}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}) \,.$$

Successive Over-relaxation (SOR)

$$\bar{\phi}_{i,j} \leftarrow \frac{\omega}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}) + (1-\omega)\phi_{i,j}.$$

 ω in [1,2]

Timings

Scheme	Iterations	Time
Jacobi	2573	2.5
Gauss-Seidel	2918	15
Red-Black	2934	0.20
Gauss-Seidel-SOR	1116	7.6
Red-Black-SOR	1131	0.10

Solvers for Poisson Equation

Mahendra Verma

$$\nabla^2 \phi = f$$
.

$$\frac{1}{h^2}(-4\phi_{i,j}+\phi_{i-1,j}+\phi_{i+1,j}+\phi_{i,j-1}+\phi_{i,j+1})=f_{i,j},$$

$$\mathbf{A} \begin{bmatrix} \phi_{0,1} \\ \phi_{0,m} \\ \phi_{1,0} \\ \phi_{1,1} \\ \dots \end{bmatrix} = \begin{bmatrix} f_{0,1} \\ \vdots \\ f_{0,m} \\ f_{1,0} \\ f_{1,1} \\ \dots \end{bmatrix},$$

Jacobi Method

$$\bar{\phi}_{i,j} = \frac{1}{4} (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}) - \frac{h^2}{4} f_{i,j} \,.$$

The source term $\exp(-20r^2)$.

• We can apply other methods like Gauss-Seidel, Red-black, etc.

